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and different processes seem to share similar rates. This is why, in general, very
few higher crossings are used in testing goodness of fit.

The present paper gives an overview of our previous work particularly

Kedem and Reed (1985) and Kedem (1985) to which the reader is referred for mathematical
details and more examples.
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“\}/ The oscillatory appearance of stationary time series is captured
very economically by only a few higher order crossings which in addition
contain a great deal of the spectral content of the process. A useful
approximation to the variances of higher order crossings is discussed
and is applied in the construction of probability limits for the

hypothesized higher order crossings. From this, a graphical display

of higher order crossings together with their probability limits provide
a fast goodness of fit test. Examples illustrate the applicability of this

device.
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1. Introduction.

There has been a growing interest in graphical methods in time series
analysis and especially so since the popularization of electronic devices with
graphics capaBilities. In following this trend, the present article discusses
a cetain zero-crossings based graphical technique useful in testing for
goodness of fit of time series models. The idea is to use plots of higher
order crossings which are akin to plots of the correlogram and spectal densities
or the periodogram, but with the advantage of great simplicity. Under the
Gaussian assumption, the sequence of expected higher order corssings is equivalent
to the autocorrelation function and hence to the normalized spectral distribution
function, but it summarizes the data differently. In this regard, the monotone
property- of higher crossings playsan instrumental role for the initial rate of
increase exhibited by higher crossings proves to be an effective summary feature.
As the higher crossings continue to increase their rate loses its discrimination
potency and different processes seem to share similar rates. This is why in
general very few higher crossings are used in testing goodness of fit.

The present paper gives an overview of our previous work particularly
Kedem and Reed (1985) and Kedem (1985) to which the reader is referred for

mathematical details and more examples.
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; k,n’
(k) (k)
=d +,. .+ .
, Pon T 42 4%
I
4
# It is seen that Dk n counts the number of axis-crossings in the (k-1)'th
’
. , k-1 k-1
differenced series ¢ ZyseeesV z D1 n then is the usual number of
Y
“ zero~- or axis-crossings by the original series zl,...,zn.
.
From the point of view of the theory of stationary Gaussian processes, the
X sequence of higher order crossings is equivalent to the correlation and spectral
Xy structures. This is stated precisely in
Theorem 1. Let {zt} be a zero mean stationary Gaussian process with correlation
function Dj' Then the sequence {oj} is completely ditermined from the sequence
N
p {E(Dj,n)}' That is, Py is determined by E(Dl,n)""’h(Dk,n)'
R 5 S R RS G R L X R A ST RO NG S A AN !
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2. Plots of Higher Order Crossings.

I+

Let {zt}, t =0, 1,..., be a zero mean stationary Gaussian process with

correlation function pj and normalized spectral distribution function F,

and let ¥ be the difference operator, vz, = zt -z It is convenient

t-1°

to introduce the clipped binary process

x(k) - t

t 0, otherwise

which gives rise to the indicator at time ¢

(k) (k)
d(k) i 1, xt # xt—l

t 0, otherwise.

The higher order crossings of order k, D is defined by
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Proof: From Kedem and Slud (1981),

2K 2k, 2k k
COS(TE<Dk+1,n))= —<k—1)+pluk)+(k—2”-“’+(-l) Okl

n-1 2, (1)
and the pj can be determined recursively from the E(Dk n). O

Obviously it is also true, from (1), that knowledge of {pj} is equivalent
to knowledge of the sequence {E(Dj n)}. It follows that F 1is completely
’
determined by the sequence of expected higher order crossings. This is

spmmarized by the symbolism

{E(D } © {pk} e F,

Thus, exactly for the same reasons that plots of Px and F are extensively
used in time series analysis, it is useful to observe plots of higher order
crossings too.

The main thing to observe in plots of higher order corssings is the rate
at which they increase and the starting point Dl,n' The fact that higher

order crossings tend to increase can be attributed to the general fact that

Pia = Pjpn

with probability one. Hence the D, n tend to increase with j for fixed
’
but large n. See also Kedem and Slud (1981).

It is instructive to observe plots of higher order crossings and thus

motivate the central idea of this paper. VFigure 1 displays plots of ten

-



higher order crossings Dl,lOOO?""DlO,IOOO’ obtained from first order
autoregressive processes with different parameter values ¢. It is seen that
the initial rate of increase and starting point differ from process to process,

but that as the order increases the rate is almost independent of the parameter.

This same behavior has been observed in numerous cases which may be interpreted
to mean that only the very first few higher crossings carry sufficient
information which discriminates clearly between different processes.
Accordingly, it is suggested that plots with as few as six Dj,n
can be useful in goodness of fit testing. At the same time it should be noted

that higher order crossings of high order carry information too but this

information is less amenable and will not be used here.

—

ig j=1,... = +
Figure 1. Plots of Dj,lOOO’ j=1, ,10, from z, ¢zt_1 u.,» u_ are

independent N{(0,1) random variables and ¢ = 0.75,0.5,0.25,0,-0.25,-0.5,-0.75.
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3. The variance of higher order crossings.

.

The probability distribution of the Dj,n is quite intractable and we
shall concentrate on the more modest problem of approximating the variance of
higher order crossings needed for the proposed goodness of fit test.

In general, the variance of D.’ is a function of the fourth order
' cupulant function Kij)(r,s,t) of {Xéj)} which is summable under appropriate

. moment conditions. Thus for j =1 the following asymptotic result was proved

in Kedem (1980).

Theorem 2. If pj is absolutely summable then

(o]

. 5ok (1, -k,1-0] < w
" =—00 X
and
b D, -E®D, ) L
l,n l,n N N(0,0i), s
/n
. where
- 2 1 % ,.-1 2. -1 -1 2 (1), ., ..
- o, = ﬂz kz—mKsin pk) + sin ok_lb1n pk+l + 47 Ko (1,-k,1-k)].

The same result applies to every Dj,n provided the correlation functions of
{Vj_lzt} decays to zero fast. However Kij) is not known in general which makes
the above result impractical.

Another approach is to hold n fixed and let j 1increase. In this case
it is possible to obtain a useful asymptotic result under the assymption of

m~dependence. Assume that @ is a point of increase for F and let

g k) b
' )\gk) =1 o

GO
P x =1
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Then A{k)+- 0 as k - o and it was shown by Kedem and Reed (1985) that

cov @,a8) = o1, (2)

The proof of this fact depends on the differential properties of p;k)’ the

correlation functicn of {szt}. (2) readily yields.

Theorem 3. Let {zt} be an m-dependent stationary Gaussian process and assume
chat m 1is a point in the support of F. Then for fixed n

' Var(DEln)

(k) (k)
(n—l)A1 (l—Al )

lim
ko

This result was used in the construction of probability limits for the higher

crossings under the hypothesis of white noise. However the assumption of

m-dependence cannot always be verified and another approximation is called for.
A rather close approximation to the variance of D, can be provided if

(k) '

it {s assumed that the binary sequence {dt } 1is a Markov chain. This first
order approximatiof has been found very satisfactory by an extensive simulation.

Define the two parameters associated with the chain,

S0 A§k), O *fk)
NS
L PPty
2012 )

When the process is a stationary Gaussian autoregressive-moving average process

(k) v(k)

with known (or hypothesized) parameters, p and are known too

oxplicityly. Then if {dik)) is a Markov chain it can be shown (Kedem (1985))
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That
(k) k), (k) (k)
= (e (k) (k) 2p " q (VN _-p ) 1y

Var(Dk’n) (n=-1)p  ’q + l_v(k) . [(n-1) Vk n] (3)

where
(k) __(K)
_ (k) v -pin )
Vk,n =q (1-(—— q(k) ) ]/ \Y ).

This approximation has been compared (Kedem (1985)) with actual estimates
obtained from 100 independent realizations each of length n = 1000. The

results are given in Table I. Although E(D 1000) are known explicitly when

the parameters are known, these expectations are estimated too as a check

of the whole simulation. It is seen that (3) agrees well with the simulation

(k) (k)

results. An algorithm for obtaining p s V is given in Kedem (1985).
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f
‘
1
A A %
o . . A
Series i EO®5 0000 By 1000 Var (@, 14g0)} tvar @y 44000}
From 100 From (3) From 190 '.‘
Realizations Realizations s
White 1 500 497 15.81 15.96 g
Noise 2 666 666 13.15 13.63 &
3 732 732 12.16 12,53 "
4 769 770 11.57 11.49 -
5 794 795 11.18 11.05 <
6 813 814 10.82 10.00 5
1 424 425 9.64 9.67 -
RN 484 485 9.38 9.13 !
1 : g 536 537 10.29 10.81 :
s - -g7 b 594 594 11.27 12.72 g
2 : 5 651 652 11.87 12.02 ;
6 702 701 12.04 11.34 .
1 552 552 14.62 14.74 ,
; 1 \
a1 679 679 12.96 12.87 \
Lo 0.7 3 737 737 12.09 12.05 -
’ : 4 7773 772 11.27 11.52 :
5 797 797 10.70 11.12 -
6 814 814 10.15 10.80 |
1 884 883 10.04 10.51 X
@R“ﬁ(fizi 2 897 897 9.20 .53 '
A R 3 903 903 8.84 9.01
- o5 b 908 908 8.60 8.50
Yo T TE s 911 911 8.43 8.47
yo= 0.2 6 914 914 8.29 8.38
1- '\
9, = 0.1 K
2 g,
Table 1. Comparison of (3) with the Vm‘iance'\obtaincd from 100 independent .
realizations of size 1000. lL(Dj,lOOO) and [L(I)j,l()()()) are rounded to the '
nearest inloper.
2
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4. A Graphical Goodness of Fit Criterion.

The proposed goodness of fit test is based on deviations of the observed
path of higher crossings from the expected path where the later is obtained
under the hypothesis of an assumed model. Marked deviations of the observed
path from the expected one suggest that the observed process does not
oscillate as expected. The closeness of the two paths can be measured by
appealing to (3) and to conditions under which the D',n are asymptotically
normal. It can be shown, using the technique in Cuzick (1976) that when
1zt} is Gaussian the condition Z‘Okl < % implies the asymptotic normality
of the D . It follows that approximate 957 probability limits for D

k,n k)n

are for each k and sufficiently large n

1/2
{ }
+ 1.961Var Dk,n (4)

(n-1)p

where Var(Dk n) is given by (3). When at least one observed Dj n,j=1,...,6,
* k]
lies outside the limits (4) the assumed model under which (4) was derived is

rejected. Before discussing the power of this test it is illustrated by a

few examples.

4.1 Examples.
Annual Mean Temperature

The graph of the annual mean air temperature from 1781 to 1980 at
Hlohenpeissenberg, Germany, is given in Figure 2. Actually the observations for
1811 and 1812 are missing and were replaced by the mean of neighboring
observations. This has only a very small c¢ffect on the sequence of higher

crossings.
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Figure 2. Annual Temperature Series. n = 195.

(Source: Report #155 of the Deutschen Wetterdienstes, West Germay (1981).)

Since annual temperature is hard to predict, we could ask the following
- question:

Does the series oscillate as white noise? The answer is obtained from Figure 3

{E where it is seen that the higher order crossings are well within the bounds (4)

\

ls so that at least in this sense the series resembles white noise. For comparison,
j the figure portrays the higher crossings of simulated white noise which fall

:? within the bounds too as expected.

2 Dj FROM

WN LIMITS

DATA

SIMULATED WN

. 2

\:

" - 50

- \ 2 3 4 5

..f 1 1 1 1 | 1

- Fiyure 3. Protab tity lTimits tor the hipher order crossings from the temperature

eries e s fe sy osciliates g white noise.
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ARMA Models.

Figure 4 shows the probability limits (4) under various hypotheses.
These are white noise, second order autoregressive process with parameters
0.4 and -0.7, and second order autoregressive moving average process with
parameters g = (-1.4, ‘0-5)',§ = (0.2, 0.1). The actual Dj,ASO were
: obtained from simulated data given in an appendix in Priestly (1981). The
three paths fall well within their respective limits and the corresponding

hypothesises are accetped.

ARMA (2,2)
400 =T = —=-—-—-—-—>+ —

I R L

-300

» e Ta e Te

- 100

KRR

I 2 3 4 5 6
) ! I 1 ] !

Figure 4. Sample higher order crossings paths fall within their respective limits.

Caa T a T e

It is seen that the three processes display different oscillation patterns

which are captured very economically by only six higher order crossings where the

ARMA (2,2) process is most oscillatory while the AR(2) is much smoother.

Signal Detection.

Figure 5 displays two series which appear to be very similar except

.
RSP

perhaps for scale. However their higher order crossings quickly reveal that
the first one oscillates as white noise while the other oscillates roughly

N as a low order autoregressive process. This is illustrated in Figure 6.

. k.
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C e R

AT

LA AR A A

BP A D

Dj FROM
SERIES (a)

WN

Dj FROM
e SERIES (b)

Figure 6. The higher order crossings paths of series (a), (b). The first
path 1is within white noise bounds.

In testing the goodness of fit of a model one runs a residual analysis
which usually tests whether the residual series constitutes white noise.
Consider series A, D in Box and Jenkins (1976). The fitted models there

(p. 293) are

series A: Vzt =u - 0.7ut

t -1

series D: zt - 0'87Zt—l = 1,17 + u,

where {ut} is the residual series. Figure 7 however reveals that the two
residual series are not quite white as is signified by the axis-crossings
themselves which re outside the limits (4). 1t is interesting to note
though that the rest of the higher order crussings behave as those of white

noise.  Thus, cercept tor smaller D , the two residual series oscillates

l,n

as white noise.
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Figure 7. Diagnostic check applied to the residuals of series A (n=177)
and series D (n=290). Dl n is outside the limits (4) for white noise.
]

4.2 Power Simulation.
The limits (4) provide approximate 95% bounds for each D . However

j,n

our test is based on D1 n,...,D6 n simultaneously and the hypothesized
’ ?

model is rejected if at least one Dj n falls outside the probability

b4

bounds. 1Tt is expected that a test which is based on more than a single

Dj n has a higher probability of rejecting a true hypothesis than 0.05

and in fact our experience indicates that with six Dj n this probability

is about 0.1. The exact probability is still an open problem at present.
An indication of the power is provided in Table I1 which gives the power
for tesing the hypothesis of white noise where the alternative is the indicated

process. The power is estimated from 50 independent series cach of size

450. Similar results were obtained for greater series lengths.
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White Noise
AR(1), ¢
MA(1), O
AR(1), ¢ =
AR(1), ¢ =
AR(2}, ¢ =
ARMA(1,Y), ¢
ARMA(2,2),

ARMA(2.2),

Table Il. Power sinulation for testing white noise versus the indicated

process.
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